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Abstract. The renormalisation group approach is used for exploring the critical behaviour 
of bosonised models in the presence of a long-range correlated random field. The zero- 
temperature regime is studied in some detail for different types of random field correlation 
functions. As a result, the random critical exponents are not derivable from the pure ones 
with appropriate dimensional shifts. 

1. Introduction 

Quite recently (Aharony er a1 1982, Busiello er a1 1983a, 1984a, Uzunov er a1 1984) a 
number of results have been obtained about the effects of a random quenched field 
on the critical properties of quantum systems, with and without the use of the replica 
trick (Edwards and Anderson 1975, Emery 1975). When a short-range correlated 
random field is concerned (Aharony et a1 1982, Busiello er a1 1983a), the quantum 
fluctuations, just like thermal ones, appear to be irrelevant relative to those caused by 
the randomness. Furthermore, for models such as the transverse Ising model at zero 
temperature, the switch of a longitudinal random field generates a dimensional cross- 
over d + d -3  for which the random critical exponents are obtainable from the pure 
ones with d replaced by d -3  (Aharony et a1 1982). In contrast, for bosonised models 
(Bose system, X Y  model in a transverse field, spin -+ planar ferromagnet, etc) 
( D e  Cesare 1978, Busiello and  De Cesare 1980a, b, Uzunov 1981, Busiello et a1 1983b) 
a dimensional shift d + d - 4 occurs but this cannot be interpreted as a dimensional 
crossover (Busiello er a1 1983a). This situation has been confirmed by a Hartree study 
for an n-vector Bose model (Busiello et a1 1984a) and a renormalisation group (RG)  

treatment (Uzunov er a1 1984) for non-bosonised systems (structural phase transitions, 
transverse Ising model, etc) (Hertz 1976, Busiello er a1 1983b) in the presence of a 
long-range correlated random field of the type already considered for the ideal Bose 
gas (Lacour-Gayet and Toulouse 1974) and for classical systems (Kardar et a1 1983, 
Chang and Abrahams 1984). Nevertheless, in this case conditions are found under 
which the thermal and quantum fluctuations are dominant relative to the random field 
ones. 

This paper is devoted to an  RG investigation of the critical behaviour of bosonised 
models in the presence of a long-range correlated random field. Our purpose is 
three-fold: 
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( i )  to generalise the RG study of Busiello et a1 (1983a) to a Bose system with a 
free particle energy spectrum and a random field correlation function which behave 
like k“ (0 < CT s 2) and Aoi + Ao,ke (arbitrary 0 )  in the wavevector space respectively; 

( i i )  to complement the self-consistent results of Busiello et a1 (1984a); and 
(iii) to integrate the RG analysis made by Uzunov et a1 (1984) for non-bosonised 

models. 

2. The behaviour of bosonised models 

Here we use the Bose gas terminology but the results are true for other bosonised 
models apart from a different meaning of the coupling parameters (De  Cesare 1978, 
Busiello and De Cesare 1980a, b, Uzunov 1981, Busiello et a1 1983b). We consider a 
d-dimensional (n/2)-component Bose model in the presence of a quenched random 
field h ( x )  = {h’ (x ) ; j  = 1, . . . , n / 2 } ,  described in terms of the functional representation 
(Busiello et a1 1984a): 

where, for a given configuration of the random field, 2 ( h )  is the grand partition 
function and  the action %{$, h }  is given by 

In ( 2 )  + = { V ; J  = 1 , .  . . , n / 2 }  is a complex field, q = ( k ,  wI ) ,  k is a wavevector for 
which a cut-off A is assumed, w,  = 27~77 ( 1  = 0, * l ,  1 2 , .  . .) are the Matsubara frequen- 
cies, T is the temperature, - r o = p  is the chemical potential, h i =  

ddx h’ (x )  exp(-ik x)  are the Fourier components of the random field and V 
is the volume of the systems. We shall assume that { h i }  are Gaussian random variables 
with averages 

where the random correlation function g ( k )  has the asymptotical form (Uzunov et al 
1984, Kardar et a1 1983, Chang and Abrahams 1984) 

g ( k )  == Aoi + Ao2ke (arbitrary 0 )  (4) 

for small k. Of course g( k )  must be non-negative for all wavevectors up  to the cut-off 
since it is the Fourier transform of the translationally invariant correlation function 
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g(x - y )  = ( h r * ( x ) h i ( y ) ) a v .  This imposes some restrictions on the possible values of 
the parameters Ao, ( i  = 1,2) .  

The standard RG techniques for random systems, making use of the replica trick 
(Busiello et a1 1983a, 1984a) or  the direct approach (Aharony et a1 1982, Uzunov er 
a1 1984) can now be applied to the functional representation ( 1 )  and (2). We find that 
the T-dependent RG differential equations to second order in the appropriate coupling 
parameters (Busiello et a1 1983a) r, U, w, = uA, ( i =  1,2)  are (with units in which 
c = A = l )  

-=ur+kde(uA(r,  d r  d l  4 T)+- 

U'[( n + 6) B( r, T )  + 2 C  ( r, T ) ]  + 2 (  n + 8) 
d u  
d l  

uw,[ ( n + 6) B(  r, T )  + 2C( r, T ) ]  + 2( n + 8)  

B(r, T ) + 2 C ( r ,  T ) ] + 2 ( n + 8 )  

B( r, T )  = T -  sinh-2[ ( 1 + r ) /2  TI 

C(r ,  T )  = + ( I  + r)-I coth[( 1 + r)/2T]. 

In ( 5 )  we have assumed 7 = 2 - a  and z = v for the exponents which enter the 
rescaling of the fields and  the frequencies, respectively. Of course, the physical region 
is defined by U S O ,  w , +  w 2 z 0 ,  with w, 2 0  if 0 > 0 and w , S O  if 8 < O .  The case e = 0, 
which corresponds to a short-range correlated random field with Aol + AO2 = h:, has 
already been discussed by Busiello et a1 (1983a). This situation also occurs when 
w2 = 0 or  when e > 0 with w, # 0 ( i  = 1,2).  We must note that O( w:, w:, w:w2, w, w : )  
contributions to wI  are not generated by the differential RG iterations. These, which 
are present in the finite RG recursion relations (Busiello er a1 1983a), would involve 
two momentum integrations over infinitesimal shells of width SI and would therefore 
vanish in the limit S l -+O.  Thus, in the next order in the coupling parameters, the 
equation for w I  does not contain isolated terms in w:; thus w1 = O  ( A ,  =0)  implies 
d w , / d l =  0 at least up  to this order. Therefore the present random problem is simplified 
by initially taking A ,  = 0. We expect that this peculiarity consistently persists at higher 
orders with the corresponding results in the large-n limit (Busiello et a1 1984a) and  
in contrast with the case of long-range correlated quenched impurities which couple 
quadratically to the order parameter both for classical (Weinrib and Halperin 1983) 
and  quantum systems (Busiello et a1 1984b). 

For T f 0, since T(1) + 00 by iteration of the RG transformation, in terms of the 
new parameter U = UT, equations ( 5 )  reduce to the equations for the corresponding 
classical n-vector model and the results of Uzunov et a1 (1984) and Kardar et a1 (1983) 
are readily reproduced. 
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Let us consider now the T = 0 regime where the quantum fluctuations might play 
a role. Equations ( 5 )  reduce to 

d r  n + 2  w l + w 2  
- = g r  + kd- ~ 

d l  4 (1+r ) '  

U ( W ,  + w2)  

( I  + r l 3  
k d (  n + 8) 

k d  U' 
- ( U  -- d ) u  -- dU 

d l  4 I + r  2 
_-  

Now we discuss separately the cases ( w l  0, w2 3 0) and ( wI f 0, "2 f 0). 

2.1. W , ' O ,  w , 2 0  

In this case equations ( 7 )  show a peculiar degeneracy for 0 = 2 u  which will be 
considered later. With 0 # 2u the fixed points can be determined from ( 7 )  with w ,  = 0 
and the three eigenvalues A, A,, A,, for each fixed point can be obtained, as usual, 
by diagonalising the corresponding linear matrix from ( 7 ) .  They are listed in table 1 
and table 2 respectively. 

Table I .  Fixed points of the RG equations for w ,  = 0 ,  w2 f 0. 

Fixed points r* U *  U; 

I Gaussian 

I 1  Long-range disorder 

I11 Pure 

0 0 0 
I  n + 2  

2 0  n + 8  
( 3 ~ -  0 - d )  0 -- - 2 ( 3 u  - 0 - d )  

k , , ( n + 8 )  

0 

Table 2. Eigenvalues for each fixed point of table I 

I Gaussian 

I1 Long-range disorder 

111 Pure 

U 5 - d  3 ~ - 0 - d  

o - - ( ~ u -  0 - d )  0 - 2 u  d + 0 - 3 0  

U d - u  2 0 -  0 

n + 2  
n + 8  

The Gaussian fixed point ( FP) ( I )  is stable for d / u  > 1 and ( d  + e)/  U > 3 and for 
these values of (d, U, e)  the critical behaviour of the system will be Gaussian. In the 
case of the long-range FP (11 ) ,  in order for it to be stable, it must be ( d  + e) /u  < 3 with 
8 / u < 2 .  For ( d + B ) / u < 3  this FP is unphysical ( w ; < O )  but in any case unstable. 
Thus, for ( d  + 8 ) / u < 3  and e / u < 2 ,  the critical behaviour of the system is 
dominated by the long-range randomness and  for the correlation length exponent we 
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have v = U - '  +U- ' (  n + 2 ) (  n + 8 ) - ' ( 3 u  - 0 - d )  to first order in E @  = 3u - 0 - d. Finally, 
the pure FP (111) is stable for d / u <  1 and 0 > 2 u ,  just where the long-range disorder 
FP is unstable. Therefore for d / u  < 1 and 0 > 2 u  the quantum fluctuations dominate 
the random ones and the presence of the random field has no effect on the pure critical 
behaviour in the quantum regime (De  Cesare 1978, Busiello and De Cesare 1980a, b, 
Uzunov 1981). The regions in the ( d / u ,  O/u) plane, where the different FP are stable 
and  the corresponding critical regimes for the system occur, are schematically shown 
in figure 1. The straight lines ( d / u =  1, 0 > 2 u )  and ( ( d + B ) / u = 3 ,  d / u >  1 )  separate 
the pure (111) and the random long-range (11) regimes from the Gaussian ( I )  one and 
here logarithmic corrections to Gaussian exponents are expected (local marginality, 
Pfeuty and  Toulouse 1977). 

2 

1 

0 

Figure 1. Stability regions for different fixed points when w ,  = 0, w 2  # 0 

We now investigate the case 0 = 2 u  which marks the borderline between I1 and  
I11 regimes for d / u <  1 and constitutes a type of persistent marginality (Pfeuty and 
Toulouse 1977). In this case, the equations (7) show a degeneracy along the line of 
the parameter space: 

(8) 

to O(u, w2). 

For d > U the behaviour of the system is governed by the stable Gaussian FP. For 
d < U ,  the degeneracy leads to departures from universality; the critical exponents 
correspond to the FP obtained as an  intersection of a trajectory, specified by a set of 
initial conditions (U,,, wo2 = u0AO2) and the line of degeneracy (8) (Pfeuty and Toulouse 
1977, Tadic and Pirc 1984). Since from ( 7 )  we have w ? =  uAO2, to first order in ( U - d )  
the non-trivial FP for our  random problem is 

k d  
( U  - d )  ---.[U +2(  n + 8 ) w J  = 0 

4 
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with eigenvalues 

2( t~ + 2 ) A 0 2 ( ~  - d )  
& = U -  A,, = - ( C T  - d )  A w z = - ( r - d ) .  

1 + 2( t~ + 8)Aoz 
(10) 

The relations (10) show that for d < U the FP (9) is stable (for d > CT is unphysical and  
unstable) For the correlation length exponent we find 

1 2 ( n + 2 ) A , , ( ~ - d )  v=-+- 
U U* l+2(n+8)AO2 

and  the other exponents can be valued in a standard way. Thus, for 8 = 2 u  and d < U 

the location of the stable FP and the values of the critical exponents are uniquely 
determined by the initial distribution of the impurities and, in this sense, we have a 
non-universal critical behaviour (Pfeuty and  Toulouse 1977, Tadic and Pirc 1984). Of 
course, this result may be an  artefact of the present approximation and to clarify this 
question one should have to include higher order terms in the recursion relations. 

2.2. w, # 0, w2 # 0 

We must use the full equations (7) and the RG analysis is parallel to case 2.1 with the 
additional coordinate w, in the parameter space. Furthermore we assume 8 # 0 because, 
when 8 = 0, from (7) we obtain, as expected the RG equations for the parameters r, U ,  

w = w ,  + w2 appropriate for discussing the short-range disorder of the type considered 
in Busiello et a1 (1983a). The relevant FP of (7) and the corresponding eigenvalues 
are listed in tables 3 and 4 respectively. 

Table 3. Fixed points of the RG equations for w, # 0, w2 # 0. 

Fixed points r* U* w 7 wT 

I Gaussian 0 0 0 0 
1 n + 2  2 

1 n + 2  2 

I 1  Short-range disorder -- ~ ( 3 ~ - d )  0 ( 3 ~ - d )  0 
2 0  n + 8  

2u n + 8  k d ( n + 8 )  

k ,  ( n + 8) 

I11 Long-range disorder -- ~ ( 3 ~ - 8 - d )  0 0 ( 3 ~ - 0 - d )  

4 
IV Pure 0 - ( u - d )  0 0 

kd 
~~ ~~ 

Table 4. Eigenvalues of each fixed point of table 3. 

~ 

Fixed points A ,  A M  A n ,  A "1 

I Gaussian U a - d  3 ~ - d  3 ~ - 0 - d  
n + 2  
n + 8  

I1 Short-range disorder ~ - - ( 3 c ~ - d )  -2u d - 3 ~  - 0  

n + 2  
n + 8  

111 Long-range disorder ~ - - ( 3 ~ - 8 - d )  e - 2 u  e d + B - 3 u  

IV Pure U d - U  2u 2 u -  e 



Random j e l d  in bosonised models 1811 

Table 4 shows that the FP I is stable for d / u >  3 if 8 >  0 and for ( d  + 8) /u>  3 if 
8 <O. The FP I1 is stable only for d / u < 3  and 8 >  0. For these values of d, 8 and u 
the critical behaviour is dominated, as expected, by the short-range disorder and we 
find v = U-' + K2( n +2)(  n + 8)-'(3u - d )  to first order in E = 3 u  - d. 

We note incidentally that when 8 = 2u, we also have a degeneracy situation similar 
to that considered in 2.1 and the A,,-dependent FP (9) is present with the additional 
coordinate w r  = 0. Nevertheless, since in this case A,, = 2 u  > 0 this non-universal FP 
is unstable with respect to w, and is therefore irrelevant for our random problem. 

In the case of the FP 111, we see that it is stable only for ( d +  8 ) / u < 3  and 8 <0,  
where v = 6' + u-2( n + 2)( n + 8)- '(3u - 8 - d )  as in case 2.1 when the long-range 
disorder is relevant. Finally, since A(H1;) = 2 a  > 0, we have that, in contrast with case 
2.1, the pure FP 1V is in any case unstable, at least with respect to the short-range 
perturbation. This means that the quantum fluctuations are entirely dominated by the 
randomness. In figure 2 the different regions of stability in the ( d / u ,  8 / u )  plane for 
different FP are qualitatively shown. 

Figure 2. Stability regions for differerent fixed points when w ,  # 0, w2 # 0 

3. Conclusion 

In conclusion, the previous analysis indicates the following points. 
(1 )  The results with wI = 0 are consistent with the corresponding ones obtained by 

Busiello et a1 (1984a) by means of the Hartree approximation. 
(2) When the disorder is relevant, the critical exponents are not derivable from 

the pure Gaussian ones (De Cesare 1978, Busiello and De Cesare 1980a, b, Uzunov 
1981) with appropriate dimensional shifts. This confirms the results of Busiello er a1 
(1983a) and it is peculiar to bosonised systems. 

(3) Except for the case wI = 0 with d < u and 8 > 2u, the quantum fluctuations, as 
the thermal ones at T f 0, are irrelevant relative to those caused by the random field 
and the classical-quantum crossover in the low-temperature limit, which appears in 
the pure systems (De Cesare 1982) is destroyed. 

(4) Even if the (T=O)-RG equations are different from those for non-bosonised 
systems, the random behaviour is similar to that discovered by Uzunov er a1 (1984). 
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